
Just Another AI Paper: Presenting JACoB, A Workflow-Driven

Approach to Integrating LLMs into Software Engineering

Kevin Leneway, Chris Pirich
Pioneer Square Labs

May 21, 2024

Abstract

The integration of Artificial Intelligence (AI) into
software development heralds a paradigm shift,
promising unprecedented efficiencies and innovations.
However, the seamless incorporation of Large Lan-
guage Models (LLMs) into complex, multi-agent soft-
ware engineering ecosystems poses significant chal-
lenges. JACoB (Just Another COding Bot) emerges
as a pioneering solution, an open-source framework
that revolutionizes software development by lever-
aging an event-driven architecture and sophisticated
contextual prompting mechanisms. This framework
facilitates the fluid integration of LLMs with existing
development tools, enhancing collaboration and effi-
ciency within software teams. JACoB distinguishes
itself by generating a dynamic source map and em-
ploying a nuanced prompt system that tailors inter-
actions with LLMs to the specificities of the project,
language, and coding standards, thereby significantly
elevating code quality and development speed.
Our reference implementation of JACoB, aimed

at automating front-end development tasks such as
transforming Figma designs into executable code,
serves as a testament to its capabilities. By orches-
trating an assembly of specialized AI agents, JACoB
not only streamlines the development process but
also minimizes the cognitive load on developers, set-
ting a new benchmark for AI-assisted software engi-
neering. Preliminary evaluations indicate remarkable
improvements in development efficiency and output
quality, substantiating JACoB’s potential to redefine
front-end development practices.

Moreover, JACoB’s flexible architecture promises
wide applicability across various development tasks,
offering insights into future expansions in test-
ing, backend development, and project initializa-
tion. This abstract delineates JACoB’s innovative
approach to integrating AI into software develop-
ment, showcasing its potential to transform the in-
dustry by bridging the gap between theoretical AI
capabilities and practical development needs, thereby
paving the way for a new era of enhanced productiv-
ity and creativity in software engineering.

1 Introduction

As the digital era advances, the software development
landscape is undergoing rapid transformation, driven
by an escalating demand for efficiency, scalability,
and quality. Traditional methodologies increasingly
fall short, challenged by the manual intensity of tasks,
integration complexities, and the significant cognitive
demands on developers. In this context, the emer-
gence of Large Language Models (LLMs) heralds a
new frontier for automation, offering a glimpse into
a future where software creation is both streamlined
and elevated. Yet, the integration of these advanced
AI technologies into the nuanced, collaborative envi-
ronments of software development projects presents a
substantial challenge, bridging the gap between the-
oretical potential and practical application.

JACoB (Just Another COding Bot) emerges as a
beacon of innovation in this evolving scenario, de-
signed to harness the capabilities of LLMs within

1



the software development process. This open-source
framework epitomizes the fusion of AI-driven au-
tomation with the dynamic needs of development
teams, introducing an event-driven architecture en-
hanced by sophisticated contextual prompting mech-
anisms. JACoB is not merely a tool but a transforma-
tive agent, crafted to seamlessly integrate with exist-
ing development tools and LLMs, thereby mirroring
and amplifying the workflows of real-world software
teams. Through its deployment, JACoB aims to cat-
alyze a significant leap in development efficiency and
elevate code quality to new heights.
This paper delves into the architectural and tech-

nical nuances of JACoB, presenting a detailed explo-
ration of its design, functionality, and a specific refer-
ence implementation that demonstrates its prowess in
automating front-end development tasks, notably the
conversion of Figma designs into executable code. By
leveraging an assembly line of specialized AI agents,
JACoB not only streamlines the development process
but also significantly reduces the cognitive load on de-
velopers, marking a milestone in the journey towards
AI-assisted software engineering.
Furthermore, the scope of JACoB’s applicability

extends beyond the realms of front-end development.
This introduction sets the stage for a comprehen-
sive examination of JACoB’s potential to revolution-
ize various facets of software development, from test-
ing and backend processes to project initialization.
In presenting JACoB’s architecture and its imple-
mentation, this paper seeks to bridge the theoreti-
cal capabilities of LLMs with the tangible needs of
the software development industry, showcasing the
framework’s versatility and its profound implications
for the future of development practices.
The contributions of this research are multifaceted,

establishing new benchmarks for the integration of
AI within software development. By articulating
the principles underpinning JACoB’s event-driven,
multi-agent framework, and illustrating its practi-
cal application in enhancing front-end development
workflows, we illuminate the path for a future where
AI-driven automation becomes a cornerstone of soft-
ware engineering. As we navigate the subsequent sec-
tions, we will engage with related work, dissect JA-
CoB’s architectural blueprint, share preliminary re-

sults from its deployment, and discuss the broader
implications of our findings, underscoring the trans-
formative potential of JACoB within the software de-
velopment ecosystem.

2 JACoB Architecture

JACoB’s architecture is designed for modularity and
scalability, centralizing around an event-driven sys-
tem that integrates with existing applications like
GitHub and Figma to automate software develop-
ment tasks. It operates through a series of commands
in GitHub, enabling flexible, scalable workflows that
cater to various development needs. This approach
allows JACoB to seamlessly perform tasks ranging
from code generation to deployment by employing
specialized AI agents, ensuring adaptability to devel-
oper preferences and project standards.

2.1 Event-Driven Design of JACoB

JACoB’s architecture leverages an advanced event-
driven design to automate and streamline the soft-
ware development process. This design is pivotal
for enabling a highly flexible and scalable system
that can respond dynamically to various development
tasks. The essence of this approach lies in its use
of GitHub issues and comments as a platform for
triggering and managing tasks through specific com-
mands.

2.1.1 Command-Based Task Activation

The core mechanism for task management in JACoB
is the interpretation and execution of predefined com-
mands within GitHub comments. These commands
serve as directives for JACoB to initiate different
stages of the development workflow:

• Start Coding: Initiates the coding process.

• Create Plan: Generates a plan for the coding
task.

• Write Code: Triggers the code writing phase.

2



• Build: Commences the build process to compile
the code.

• Fix Build Error: Addresses and rectifies any
build errors.

• Create Story: Initiates the creation of user sto-
ries or documentation.

• Code Review: Starts the code review process
for quality assurance.

These commands can be chained, allowing the out-
put of one task to seamlessly trigger the next, facil-
itating a continuous and efficient development work-
flow. Note that these are just a few examples of the
commands that JACoB can interpret and execute.
The system is designed to be extensible, allowing for
the addition of new commands to accommodate a
wide range of development tasks.

2.1.2 Flexible and Scalable Workflow Inte-
gration

JACoB’s event-driven design is not only flexible, al-
lowing for the addition of new commands and tasks,
but also scalable. It can be adapted to accommo-
date various development environments and work-
flows. This flexibility is crucial for extending JA-
CoB’s capabilities beyond its current implementa-
tion, including potential integration with other plat-
forms and the introduction of new, specialized tasks.

2.1.3 Future Directions

Looking ahead, JACoB’s event-driven architecture
holds the potential for further innovation. One area
of exploration is the development of a more nuanced
task orchestration system, where a single agent could
trigger multiple new agents based on the context of
the current task. This would enhance JACoB’s abil-
ity to manage complex, multi-faceted development
projects with even greater efficiency.
Summary: The event-driven design of JACoB

represents a foundational aspect of its architecture,
enabling a high degree of automation, flexibility, and
scalability in software development tasks. Through

Figure 1: JACoB’s Event-Driven System Diagram.
The diagram shows an event bus at the center, co-
ordinating a sequence of AI agents that automate
development tasks. Each agent responds to specific
events, carries out a task, and passes on the workflow
via new events until the final ”finished task” event is
reached.

the strategic use of GitHub commands and the po-
tential for future expansion, this design paradigm un-
derscores JACoB’s role as a transformative force in
AI-driven software development.

As outlined, JACoB’s architecture innovatively in-
corporates AI to automate and enhance software de-
velopment workflows. A key component of this sys-
tem is its ability to generate new code files efficiently,
utilizing a sophisticated assembly of machine learning
models, source code analysis, and automated work-
flow integrations.

3



2.2 Example of New Code Agent Task
Flow

The task flow for creating new code files demonstrates
JACoB’s integration of advanced technologies and
methodologies. This process is segmented into sev-
eral phases, from initial analysis to code integration
and validation.

2.2.1 Initial Analysis and Preparation

JACoB begins with a thorough analysis of the exist-
ing code repository. This initial step involves:

• Repository Analysis to create a comprehensive
source map.

• Parsing Configuration and Preferences to align
generated code with user standards.

• Type and Image Extraction for consistent and
accurate code generation.

• Example File Analysis to understand and emu-
late the repository’s coding style.

2.2.2 Dynamic Prompt Construction

Following the preparatory analysis, JACoB con-
structs a custom prompt tailored to the specific code
generation task. This step ensures the instructions
are precisely aligned with the project’s needs and the
developer’s preferences.

2.2.3 Code Generation

Utilizing the constructed prompt, JACoB engages
Large Language Models (LLMs) or multimodal learn-
ing models, depending on the task’s requirements.
The selection of the model is contingent upon the
available inputs, such as visual designs or textual
specifications.

2.2.4 Code Integration and Validation

Generated code undergoes a rigorous integration and
validation process, including:

• Branch Creation for safe code review and inte-
gration.

• File Placement and Writing to appropriately lo-
cate the new code within the project.

• Automated Build and Test Cycles to ensure code
quality and functionality.

• Pull Request Creation for human review and fi-
nal approval.

2.2.5 Error Handling and Reporting

JACoB proactively addresses and reports errors en-
countered during the code generation or integration
phases, facilitating a loop of continuous improvement
and error resolution.

Summary: This detailed examination of a single
task flow within JACoB’s architecture underscores
the bot’s capability to marry AI-driven development
with traditional software engineering practices, offer-
ing insights into the future of automated software de-
velopment.

3 Adaptive AI Coding and
Workflow Integration

The development of JACoB represents a significant
leap in addressing a common challenge faced by AI
coding tools: the generation of code that not only
adheres to the syntactic and semantic requirements
of the target language or framework but also aligns
with the unique coding standards and practices of in-
dividual developers and teams. This section explores
the mechanisms JACoB employs to achieve this goal,
emphasizing the system’s adaptability and seamless
integration into existing software development work-
flows.

3.1 Automating Contextual Under-
standing

A core design objective for JACoB was to automate
the process of providing the Large Language Model
(LLM) with a deep understanding of a codebase’s

4



unique characteristics. Traditional approaches re-
quire manual selection and input of context, a te-
dious and error-prone process. JACoB innovates in
this area by developing a system that identifies and
extracts key components of a codebase’s style and
practices in a manner that is both flexible and effi-
cient.

3.1.1 Command Line Configuration Tool

JACoB introduces a command line tool that inter-
rogates developers about their codebase, covering
aspects from language and framework preferences
to specific coding conventions like file placement,
custom styles, package dependencies, and icon li-
braries. This tool dynamically generates a configu-
ration file that encapsulates the essence of the code-
base’s unique attributes, stored at the root of the
repository for easy access and modification. This ap-
proach ensures that JACoB operates with full knowl-
edge of the project’s specific requirements without
relying on external databases, crucial for developers
concerned with privacy and data security.

3.1.2 Contextual Prompting for LLM

JACoB’s approach to enhancing the interaction with
Language Large Models (LLM) involves a meticu-
lously designed two-fold strategy. This strategy is
pivotal in acquainting the LLM with the intricacies
and specific requirements of the project’s codebase,
thus enabling the generation of code that is both
functional and congruent with the existing structures.

Generating a Source Map At the core of JA-
CoB’s strategy is the creation of a comprehensive
source map that encompasses the entire repository.
This map meticulously details each file, including file
names and function signatures, providing the LLM
with a holistic view of the project’s architecture.
Such a map is instrumental in guiding the LLM to
produce code that not only fits seamlessly within the
existing code structure but also adheres to the pre-
defined architectural and design patterns.

Sophisticated Prompt System Complementing
the source map is a sophisticated prompt system that
is divided into system and user prompts. This sys-
tem is designed to structure the interaction with the
LLM in a way that incrementally increases specificity,
starting from a base prompt that outlines the general
coding task to be undertaken.

• Base Prompt: The foundation of the prompt
system, detailing the overarching task that the
LLM is to execute. This prompt sets the stage
for more detailed instructions tailored to the
project’s requirements.

• Language-Specific Instructions: Following
the base prompt, additional instructions are pro-
vided that are specific to the programming lan-
guage of the project (e.g., JavaScript or Type-
Script). This ensures that the code generated
by the LLM adheres to language-specific conven-
tions and syntax.

• Framework Guidelines: The prompt system
also includes instructions related to any frame-
works being used within the project. This is cru-
cial for ensuring that the generated code com-
plies with the best practices and usage patterns
of the framework.

• Visual Design Elements: If the project in-
cludes UI development, the prompt system in-
corporates directives based on visual design el-
ements. This ensures that the generated code
aligns with the aesthetic and functional design
guidelines.

• Customization Through Modular
Prompts: The prompt system is built on
a repository of text files, each corresponding to
different facets of the coding task. This modular
approach allows for prompts to be customized
according to the specific needs of the project,
enabling the LLM to generate code that is not
just functional but also congruent with the
team’s stylistic and structural preferences.

Through this elaborate prompting system, JACoB
ensures that the LLM is well-informed about the

5



Figure 2: JACoB’s Dynamic Prompt Creation. The
diagram illustrates how project settings such as lan-
guage, styling, and icons are used to generate spe-
cific instructions for TypeScript, TailwindCSS, and
FontAwesome. These instructions are then combined
into a comprehensive system prompt that guides the
LLM in generating the desired code.

specifics of the project’s codebase, facilitating the
generation of code that is both accurate and har-
monious with the existing project structure. This
methodical approach underscores the importance of
context and specificity in leveraging LLMs for code
generation, paving the way for more efficient and co-
herent development practices.

3.2 Integrating with Development
Workflows

JACoB’s integration into existing software devel-
opment workflows is designed to be both seamless
and non-disruptive. The system’s operation through
GitHub comments and pull requests ensures that all
interactions with JACoB remain within the familiar
confines of the development team’s existing tools and
practices.

3.2.1 Iterative Build and Lint Process

A standout feature of JACoB’s integration is its it-
erative build and lint process. After generating new
code files, JACoB initiates build commands and lint-
ing checks to ensure that the output conforms to
the codebase’s established standards. This step is
crucial for maintaining code quality and consistency.
If errors or style discrepancies are detected, JACoB
automatically generates GitHub comments detailing
the issues, allowing for rapid iteration and correction.

This process not only guarantees that the generated
code meets the project’s quality standards but also
facilitates a continuous improvement loop where JA-
CoB learns from each interaction.

3.2.2 Enhancing LLM Instructions with
Real-world Examples

To further refine the LLM’s output, JACoB provides
the option for developers to link to example files that
exemplify their coding standards. These examples
serve as additional context for the LLM, enhancing
its ability to produce code that aligns closely with
the team’s expectations. Looking forward, JACoB is
positioned to leverage advancements in LLM capabil-
ities, including larger context windows, to potentially
use entire codebases as direct input for even more nu-
anced and accurate code generation.

3.3 Conclusion

JACoB’s adaptive AI coding and workflow integra-
tion represent a paradigm shift in automated code
generation. By automating the contextualization
process, generating detailed source maps, and em-
ploying an iterative build and lint process, JACoB
ensures that the code it generates is not only func-
tionally accurate but also adheres to the unique stan-
dards and practices of the development team. This
level of customization and integration positions JA-
CoB as a valuable ally in the software development
process, enabling teams to focus on higher-level de-
sign and problem-solving tasks. As JACoB evolves
and expands its capabilities, it promises to further
bridge the gap between AI-generated code and the
nuanced requirements of real-world software devel-
opment projects.

4 Case Study: From Figma De-
sign to Code Generation with
JACoB

This case study takes a deeper look into the inno-
vative process developed by JACoB for converting

6



Figma designs into high-fidelity, production-ready
code, with a focus on React applications. The JA-
CoB Figma-to-code plugin represents a significant
advancement over traditional methods by utilizing
a combination of tailored data extraction, a custom
markup language (Jacob ML), and leveraging Large
Language Models (LLMs) with vision capabilities for
enhanced code generation accuracy.

4.1 Challenges with Direct Figma
JSON to Code Conversion

Figma designs are inherently complex, represented as
sizable JSON objects that encapsulate various design
elements, metadata, and structural hierarchies. Di-
rectly parsing these JSON objects for code generation
presents substantial challenges:

• The JSON structure contains excessive informa-
tion, much of which is irrelevant for direct code
generation, leading to inefficiency and potential
confusion for LLMs.

• The voluminous nature of these objects can over-
whelm LLMs, particularly those with smaller
context windows, by burying essential design de-
tails under redundant or non-essential data.

• Directly translating JSON to code risks losing
the design’s nuance and fidelity, resulting in sub-
par or non-functional implementations.

4.2 JACoB’s Three-Step Solution

JACoB addresses these challenges through a meticu-
lous three-step process designed to distill Figma de-
signs into a more manageable and semantically rich
format that LLMs can efficiently interpret and con-
vert into code.

4.2.1 Step 1: Streamlining Figma Designs

The initial phase involves iterating over each node
and its children within the Figma design file to ex-
tract critical style information, including CSS prop-
erties or Tailwind CSS classes. This step significantly
reduces the bulk of data by eliminating non-essential

information and focusing solely on attributes critical
for the visual and structural replication of the design.
By streamlining the design data, JACoB minimizes
the cognitive load on LLMs, enabling them to gener-
ate code that accurately reflects the original design
intent.

4.2.2 Step 2: Introduction of Jacob ML

Following the extraction and simplification of design
attributes, JACoB introduces ”Jacob ML” (Jacob
Markup Language), a custom markup designed to
bridge the gap between complex design specifications
and the LLM’s understanding. Inspired by frame-
works like Tailwind, Jacob ML encapsulates the es-
sential layout, typography, color schemes, and other
design elements in a concise, readable format con-
ducive to LLM processing. This step includes han-
dling embedded binaries or large files (e.g., SVGs) by
extracting them to a secure S3 bucket and referencing
them in the Jacob ML via unique identifiers, thereby
streamlining the integration of multimedia elements
without overloading the LLM.

4.2.3 Step 3: Leveraging LLMs for Code
Generation

With the design effectively translated into Jacob ML
and associated resources securely stored and refer-
enced, the process advances to leveraging GPT-4,
equipped with vision capabilities, for code genera-
tion. JACoB combines the Jacob ML document with
a snapshot of the Figma design, stored temporarily
in a secure S3 bucket with time-limited access, to
provide a comprehensive context for the LLM. This
dual-input approach, integrating both a visual rep-
resentation and a semantically rich markup, signifi-
cantly enhances the LLM’s ability to generate accu-
rate, high-fidelity React code that closely mirrors the
original design intent.

Furthermore, JACoB facilitates the creation of
GitHub issues directly within the user’s repository,
tagging the Jacob AI bot to initiate the code inte-
gration workflow. This automation not only stream-
lines the development process but also ensures that
the generated code aligns with the project’s existing

7



codebase and style conventions.

4.3 Advantages of JACoB’s Approach

JACoB’s methodological approach offers several key
advantages over traditional Figma-to-code plugins:

• Enhanced Code Quality: By providing LLMs
with a clear, focused representation of the de-
sign, JACoB enables the generation of more ac-
curate and functional code, suitable for immedi-
ate integration into production environments.

• Efficient Design-to-Code Translation: The
streamlined Jacob ML format and strategic han-
dling of design elements facilitate a more efficient
conversion process, reducing the cognitive load
on the LLM and minimizing the risk of informa-
tion loss or misinterpretation.

• Customization and Flexibility: JACoB’s
process allows for additional user-defined in-
structions, akin to guiding a junior developer,
further tailoring the generated code to specific
project needs and enhancing the LLM’s ability
to produce complex, component-based architec-
tures.

• Improved Component Variability Han-
dling: The vision-enabled LLM can discern and
appropriately handle different states or varia-
tions of a single component within the design,
a task that traditional plugins often mishandle,
leading to redundant or fragmented codebases.

The JACoB Figma-to-code plugin exemplifies a
novel approach to automated code generation, mar-
rying the strengths of advanced AI models with
smart data preprocessing and custom markup lan-
guages to transform design artifacts into functional,
maintainable code. This case study not only un-
derscores JACoB’s technical ingenuity but also its
practical implications for streamlining the design-
to-development workflow, ultimately enhancing pro-
ductivity and code quality in software development
projects.

5 Discussion

The development and implementation of the JACoB
Figma-to-code plugin have yielded significant insights
and advancements in the field of automated code gen-
eration from design tools like Figma. This section
discusses the key findings, compares JACoB with ex-
isting tools, addresses identified limitations, explores
potential real-world applications, and outlines future
research directions.

5.1 Key Findings

The JACoB plugin’s ability to generate production-
level code directly from Figma designs represents a
notable leap forward in design-to-code automation.
One of the most unexpected findings from our case
study and user feedback was the plugin’s unprece-
dented effectiveness in producing deployable code.
Unlike previous tools that often required additional
development work or were suitable only for prototyp-
ing and low-code environments, JACoB stands out by
delivering code that developers can use out-of-the-
box. This achievement not only accelerates the de-
velopment process but also maintains high code qual-
ity, addressing a long-standing gap in the design-to-
development workflow.

Furthermore, the architecture of JACoB, while ini-
tially focused on JavaScript and Node.js projects,
showcases a versatile framework capable of adapting
to various developer workflows. The intention to ex-
pand JACoB’s capabilities to encompass a broader
range of tasks and programming environments high-
lights the project’s potential to revolutionize software
development by automating tedious and error-prone
activities.

5.2 Comparison with Existing Tools

JACoB distinguishes itself from existing Figma-to-
code plugins through its accuracy, usability, and ef-
ficiency. Leveraging AI and a sophisticated prompt
flow approach, integrated with users’ GitHub repos-
itories, JACoB understands and adapts to the spe-
cific coding practices and architectures of different

8



projects. This deep integration, coupled with an ex-
ternal panel of engineers’ blind review, confirms that
JACoB consistently produces higher quality code
than any other tool currently available. Such ad-
vancements underscore JACoB’s unique position in
the market, setting a new standard for automated
code generation tools.

5.3 Identified Limitations

Despite its innovative approach, JACoB is not with-
out limitations. Currently optimized for JavaScript
and Node.js projects, its applicability is limited
to this ecosystem, although plans are in place to
broaden its reach to other languages and frame-
works. Additionally, JACoB’s requirement to run
and evaluate code presents challenges in environ-
ments with non-standard build steps, leading to in-
tegration difficulties for some beta users. These lim-
itations highlight areas for technical refinement and
underscore the importance of ongoing development
to enhance JACoB’s versatility and usability across
diverse project types.

5.4 Potential Real-World Applica-
tions

The potential real-world applications of JACoB are
vast and transformative. By automating routine cod-
ing tasks, JACoB has the potential to significantly
speed up the software development process while en-
suring high-quality output. This automation allows
developers to concentrate on creative problem-solving
and innovative design, shifting the focus from manual
coding to more strategic and impactful work. Such
a shift not only enhances productivity but also pro-
motes a more fulfilling and engaging development ex-
perience. As JACoB evolves, its integration into var-
ious workflows and platforms could redefine the role
of developers, enabling them to tackle more complex
challenges and contribute more substantially to the
advancement of technology.

5.5 Future Research Directions

The ongoing development of JACoB opens several
avenues for future research and technological explo-
ration. Adapting JACoB for additional programming
languages and frameworks represents a significant re-
search area, promising to extend JACoB’s benefits to
a broader development community. Identifying and
integrating JACoB into other tedious and error-prone
workflows offers another rich field of study, with
the potential to further streamline software develop-
ment processes. Additionally, the evaluation and us-
age of other LLMs (especially open-source models)
and multimodal learning models could enhance JA-
CoB’s capabilities, providing a more comprehensive
and adaptable solution for code generation and au-
tomation.

The decision to open source the JACoB project
invites collaboration and innovation, allowing devel-
opers worldwide to contribute to its evolution. This
collaborative approach not only accelerates JACoB’s
development but also fosters a community of prac-
tice focused on reducing the time and effort spent
on mundane tasks. By collectively tackling these
challenges, the development community can focus on
more rewarding aspects of software creation, pushing
the boundaries of what is possible in technology and
application development.

6 Related Work

The integration of Artificial Intelligence in software
development has been an area of growing interest and
rapid advancement. This surge is primarily fueled
by the emergence of Large Language Models (LLMs)
and their application across various facets of soft-
ware engineering, from code generation to automated
code review and beyond. This section explores the
landscape of AI-driven tools in software development,
highlighting key areas where AI has made significant
inroads, and positions JACoB within this evolving
ecosystem.

Code Generation: AI-driven code generation
has seen remarkable progress, with tools like GitHub
Copilot and Cursor leading the charge. These sys-

9



tems leverage LLMs to generate code snippets and
entire programs from natural language descriptions,
demonstrating the potential of AI to augment hu-
man coding efforts. However, while these tools excel
in generating code from specific prompts, they often
lack the ability to integrate seamlessly into larger,
more complex development workflows that involve
multiple agents and systems.
Code Review and Debugging: AI’s role ex-

tends into code review and debugging, where tools
such as DeepCode and CodeGuru offer automated
suggestions for improving code quality and identify-
ing potential bugs. These solutions utilize machine
learning algorithms to analyze codebases, highlight-
ing areas of concern and suggesting optimizations.
Despite their utility, these platforms primarily focus
on static analysis and do not address the dynamic
challenges of collaborative development environments
or the integration of AI in real-time coding practices.
Automated Testing: In the realm of testing, AI-

based tools have been developed to automate test
case generation and optimization. Tools like Testim
and Applitools use AI to enhance the efficiency and
coverage of testing processes, employing algorithms
to identify edge cases and reduce redundancy in test
suites. While they significantly improve testing work-
flows, their scope is often limited to predefined test
environments and does not extend to the continu-
ous, iterative development processes typical of agile
teams.
Collaborative Development Environments:

A few pioneering efforts have aimed to integrate AI
more holistically into software development environ-
ments. For instance, Microsoft’s IntelliCode and
Facebook’s Aroma offer AI-powered code completion
and recommendation systems that learn from large
codebases to suggest relevant code snippets and pat-
terns. While these advancements represent signifi-
cant steps forward, they do not fully address the com-
plexities of coordinating multiple AI agents or the
need for an event-driven architecture that can dy-
namically adapt to the evolving needs of a software
project.
JACoB’s Differentiation: Against this back-

drop, JACoB introduces a novel approach by not only
focusing on individual aspects of software develop-

ment but by orchestrating a cohesive, multi-agent AI-
driven development process. JACoB’s event-driven
architecture and sophisticated prompt flows enable
seamless integration of LLMs into complex software
engineering tasks, bridging the gap between AI’s po-
tential and practical, real-world development work-
flows. Unlike previous tools that operate in isolation
or focus on specific development stages, JACoB is
designed to enhance the entire software development
lifecycle, from initial design to final deployment, of-
fering a unified framework for AI-driven software en-
gineering. This distinction underscores JACoB’s in-
novative contribution to the field, setting a new stan-
dard for the integration of AI in software develop-
ment.

While existing AI-driven tools have laid the
groundwork for automating and enhancing various
aspects of software development, JACoB represents
a significant leap forward. Its comprehensive, event-
driven approach to integrating AI agents in a collab-
orative, multi-disciplinary development environment
sets it apart, offering a blueprint for the future of
AI-assisted software engineering.

6.1 Conclusion

JACoB marks a significant milestone in the automa-
tion of design-to-code conversion, offering unparal-
leled accuracy, efficiency, and usability. While chal-
lenges and limitations exist, the potential applica-
tions and future development paths for JACoB sug-
gest a bright future for automated coding tools. As
JACoB continues to evolve, it promises to reshape
the landscape of software development, enabling de-
velopers to focus on innovation and creativity in their
work.

7 Conclusion

In this paper, we presented JACoB, a novel Figma-to-
code plugin that leverages the power of AI to trans-
form design elements directly into production-level
code. Through an innovative architecture that in-
tegrates with developers’ GitHub repositories, JA-
CoB has demonstrated unparalleled accuracy, effi-

10



ciency, and usability in converting Figma designs to
deployable code. Our findings from case studies and
user feedback underline JACoB’s significant advance-
ments over existing design-to-code tools, highlighting
its ability to generate code that can be directly uti-
lized in production environments without the need
for further refinement.

JACoB’s development is a testament to the po-
tential of AI in automating and enhancing software
development workflows. By addressing the tedious
and error-prone task of manually converting design
to code, JACoB not only speeds up the development
process but also ensures that the quality of the code
remains high. This capability allows developers to
focus more on creative problem-solving and less on
routine coding tasks, potentially reshaping the soft-
ware development landscape.

Despite its successes, JACoB currently faces limi-
tations, particularly in its optimization for JavaScript
and Node.js projects and challenges in environments
with non-standard build steps. However, these limi-
tations open avenues for future research and develop-
ment, including adapting JACoB for a broader range
of programming languages and frameworks, integrat-
ing it into various other developer workflows and
leveraging open-source LLMs and multimodal learn-
ing models to enhance its capabilities.

The decision to open source JACoB invites the
global developer community to contribute to its evo-
lution, fostering a collaborative effort to extend its ca-
pabilities and integrate it into more workflows. This
approach not only accelerates the enhancement of
JACoB but also encourages a collective move towards
automating mundane software development tasks,
enabling developers to concentrate on more impactful
and innovative work.

JACoB represents a significant step forward in the
field of automated code generation from design tools.
As it evolves, JACoB has the potential to become an
indispensable tool in the software development pro-
cess, offering a glimpse into a future where develop-
ers are liberated from routine tasks and can dedicate
their talents to pushing the boundaries of what is
possible in technology and software development.

References

[1] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xi-
awu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan
Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao,
Chenglin Wu, and Jürgen Schmidhuber. Metagpt:
Meta programming for a multi-agent collabora-
tive framework, 2023.

11


	Introduction
	JACoB Architecture
	Event-Driven Design of JACoB
	Command-Based Task Activation
	Flexible and Scalable Workflow Integration
	Future Directions

	Example of New Code Agent Task Flow
	Initial Analysis and Preparation
	Dynamic Prompt Construction
	Code Generation
	Code Integration and Validation
	Error Handling and Reporting


	Adaptive AI Coding and Workflow Integration
	Automating Contextual Understanding
	Command Line Configuration Tool
	Contextual Prompting for LLM

	Integrating with Development Workflows
	Iterative Build and Lint Process
	Enhancing LLM Instructions with Real-world Examples

	Conclusion

	Case Study: From Figma Design to Code Generation with JACoB
	Challenges with Direct Figma JSON to Code Conversion
	JACoB's Three-Step Solution
	Step 1: Streamlining Figma Designs
	Step 2: Introduction of Jacob ML
	Step 3: Leveraging LLMs for Code Generation

	Advantages of JACoB's Approach

	Discussion
	Key Findings
	Comparison with Existing Tools
	Identified Limitations
	Potential Real-World Applications
	Future Research Directions

	Related Work
	Conclusion

	Conclusion

